41 #define BACKSTEP_SIZE 512
43 #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
87 # define SHR(a,b) ((a)*(1.0f/(1<<(b))))
88 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
89 # define FIXR(x) ((float)(x))
90 # define FIXHR(x) ((float)(x))
91 # define MULH3(x, y, s) ((s)*(y)*(x))
92 # define MULLx(x, y, s) ((y)*(x))
93 # define RENAME(a) a ## _float
94 # define OUT_FMT AV_SAMPLE_FMT_FLT
96 # define SHR(a,b) ((a)>>(b))
98 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
99 # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
100 # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
101 # define MULH3(x, y, s) MULH((s)*(x), y)
102 # define MULLx(x, y, s) MULL(x,y,s)
103 # define RENAME(a) a ## _fixed
104 # define OUT_FMT AV_SAMPLE_FMT_S16
109 #define HEADER_SIZE 4
117 0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
118 142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
121 0, 128, 128, 128, 130, 128, 154, 166,
122 142, 204, 190, 170, 542, 460, 662, 414
149 #define SCALE_GEN(v) \
150 { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
166 for (i = 0; i < 3; i++) {
178 if (s->sample_rate_index <= 2)
180 else if (s->sample_rate_index != 8)
193 l =
FFMIN(ra1 + ra2 + 2, 22);
204 if (s->sample_rate_index <= 2)
206 else if (s->sample_rate_index != 8)
224 static inline int l1_unscale(
int n,
int mant,
int scale_factor)
235 return (
int)((val + (1LL << (shift - 1))) >> shift);
249 val = (val + (1 << (shift - 1))) >> shift;
265 m = (m + (1 << (e - 1))) >> e;
276 for (i = 0; i < 64; i++) {
285 for (i = 0; i < 15; i++) {
288 norm = ((INT64_C(1) << n) *
FRAC_ONE) / ((1 << n) - 1);
302 for (i = 1; i < 16; i++) {
305 uint8_t tmp_bits [512];
306 uint16_t tmp_codes[512];
308 memset(tmp_bits , 0,
sizeof(tmp_bits ));
309 memset(tmp_codes, 0,
sizeof(tmp_codes));
314 for (x = 0; x < xsize; x++) {
315 for (y = 0; y < xsize; y++) {
316 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->
bits [j ];
317 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->
codes[j++];
325 tmp_bits, 1, 1, tmp_codes, 2, 2,
332 for (i = 0; i < 2; i++) {
335 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
342 for (i = 0; i < 9; i++) {
344 for (j = 0; j < 22; j++) {
355 for (i = 0; i < 4; i++) {
358 int val1, val2, val3, steps;
371 for (i = 0; i < 7; i++) {
375 f = tan((
double)i *
M_PI / 12.0);
376 v =
FIXR(f / (1.0 + f));
384 for (i = 7; i < 16; i++)
387 for (i = 0; i < 16; i++) {
391 for (j = 0; j < 2; j++) {
392 e = -(j + 1) * ((i + 1) >> 1);
393 f = pow(2.0, e / 4.0);
403 for (i = 0; i < 8; i++) {
406 cs = 1.0 / sqrt(1.0 + ci * ci);
424 static int initialized_tables = 0;
427 if (!initialized_tables) {
429 initialized_tables = 1;
448 #define C3 FIXHR(0.86602540378443864676/2)
449 #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
450 #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
451 #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
460 in1 = in[1*3] + in[0*3];
461 in2 = in[2*3] + in[1*3];
462 in3 = in[3*3] + in[2*3];
463 in4 = in[4*3] + in[3*3];
464 in5 = in[5*3] + in[4*3];
499 int bound, i,
v, n, ch, j, mant;
504 bound = (s->mode_ext + 1) * 4;
509 for (i = 0; i < bound; i++) {
510 for (ch = 0; ch < s->nb_channels; ch++) {
514 for (i = bound; i <
SBLIMIT; i++)
518 for (i = 0; i < bound; i++) {
519 for (ch = 0; ch < s->nb_channels; ch++) {
520 if (allocation[ch][i])
524 for (i = bound; i <
SBLIMIT; i++) {
525 if (allocation[0][i]) {
532 for (j = 0; j < 12; j++) {
533 for (i = 0; i < bound; i++) {
534 for (ch = 0; ch < s->nb_channels; ch++) {
535 n = allocation[ch][i];
538 v =
l1_unscale(n, mant, scale_factors[ch][i]);
545 for (i = bound; i <
SBLIMIT; i++) {
546 n = allocation[0][i];
566 int table, bit_alloc_bits, i, j, ch, bound,
v;
574 s->sample_rate, s->lsf);
579 bound = (s->mode_ext + 1) * 4;
583 av_dlog(s->
avctx,
"bound=%d sblimit=%d\n", bound, sblimit);
591 for (i = 0; i < bound; i++) {
592 bit_alloc_bits = alloc_table[j];
593 for (ch = 0; ch < s->nb_channels; ch++)
594 bit_alloc[ch][i] =
get_bits(&s->
gb, bit_alloc_bits);
595 j += 1 << bit_alloc_bits;
597 for (i = bound; i < sblimit; i++) {
598 bit_alloc_bits = alloc_table[j];
602 j += 1 << bit_alloc_bits;
606 for (i = 0; i < sblimit; i++) {
607 for (ch = 0; ch < s->nb_channels; ch++) {
608 if (bit_alloc[ch][i])
614 for (i = 0; i < sblimit; i++) {
615 for (ch = 0; ch < s->nb_channels; ch++) {
616 if (bit_alloc[ch][i]) {
617 sf = scale_factors[ch][i];
618 switch (scale_code[ch][i]) {
646 for (k = 0; k < 3; k++) {
647 for (l = 0; l < 12; l += 3) {
649 for (i = 0; i < bound; i++) {
650 bit_alloc_bits = alloc_table[j];
651 for (ch = 0; ch < s->nb_channels; ch++) {
652 b = bit_alloc[ch][i];
654 scale = scale_factors[ch][i][k];
655 qindex = alloc_table[j+
b];
671 for (m = 0; m < 3; m++) {
684 j += 1 << bit_alloc_bits;
687 for (i = bound; i < sblimit; i++) {
688 bit_alloc_bits = alloc_table[j];
691 int mant, scale0, scale1;
692 scale0 = scale_factors[0][i][k];
693 scale1 = scale_factors[1][i][k];
694 qindex = alloc_table[j+
b];
717 for (m = 0; m < 3; m++) {
734 j += 1 << bit_alloc_bits;
737 for (i = sblimit; i <
SBLIMIT; i++) {
738 for (ch = 0; ch < s->nb_channels; ch++) {
749 #define SPLIT(dst,sf,n) \
751 int m = (sf * 171) >> 9; \
754 } else if (n == 4) { \
757 } else if (n == 5) { \
758 int m = (sf * 205) >> 10; \
761 } else if (n == 6) { \
762 int m = (sf * 171) >> 10; \
772 SPLIT(slen[3], sf, n3)
773 SPLIT(slen[2], sf, n2)
774 SPLIT(slen[1], sf, n1)
781 const uint8_t *bstab, *pretab;
782 int len, i, j, k, l,
v0, shift, gain, gains[3];
792 v0 = gain - ((g->
scale_factors[i] + pretab[i]) << shift) + 400;
794 for (j = len; j > 0; j--)
806 for (l = 0; l < 3; l++) {
808 for (j = len; j > 0; j--)
843 #define READ_FLIP_SIGN(dst,src) \
844 v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \
847 #define READ_FLIP_SIGN(dst,src) \
848 v = -get_bits1(&s->gb); \
849 *(dst) = (*(src) ^ v) - v;
853 int16_t *exponents,
int end_pos2)
857 int last_pos, bits_left;
863 for (i = 0; i < 3; i++) {
864 int j, k, l, linbits;
902 exponent= exponents[s_index];
949 while (s_index <= 572) {
952 if (pos >= end_pos) {
953 if (pos > end_pos2 && last_pos) {
958 av_log(s->
avctx,
AV_LOG_INFO,
"overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
978 static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
980 int pos = s_index + idxtab[code];
981 code ^= 8 >> idxtab[code];
1018 if (s->sample_rate_index != 8)
1030 for (j = len; j > 0; j--) {
1031 *dst++ = ptr[0*
len];
1032 *dst++ = ptr[1*
len];
1033 *dst++ = ptr[2*
len];
1037 memcpy(ptr1, tmp, len * 3 *
sizeof(*ptr1));
1041 #define ISQRT2 FIXR(0.70710678118654752440)
1046 int sf_max, sf,
len, non_zero_found;
1047 INTFLOAT (*is_tab)[16], *tab0, *
tab1, tmp0, tmp1, v1, v2;
1048 int non_zero_found_short[3];
1063 non_zero_found_short[0] = 0;
1064 non_zero_found_short[1] = 0;
1065 non_zero_found_short[2] = 0;
1072 for (l = 2; l >= 0; l--) {
1075 if (!non_zero_found_short[l]) {
1077 for (j = 0; j <
len; j++) {
1079 non_zero_found_short[l] = 1;
1089 for (j = 0; j <
len; j++) {
1099 for (j = 0; j <
len; j++) {
1110 non_zero_found = non_zero_found_short[0] |
1111 non_zero_found_short[1] |
1112 non_zero_found_short[2];
1114 for (i = g1->
long_end - 1;i >= 0;i--) {
1119 if (!non_zero_found) {
1120 for (j = 0; j <
len; j++) {
1127 k = (i == 21) ? 20 : i;
1133 for (j = 0; j <
len; j++) {
1143 for (j = 0; j <
len; j++) {
1158 for (i = 0; i < 576; i++) {
1161 tab0[i] = tmp0 + tmp1;
1162 tab1[i] = tmp0 - tmp1;
1168 #define AA(j) do { \
1169 float tmp0 = ptr[-1-j]; \
1170 float tmp1 = ptr[ j]; \
1171 ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \
1172 ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \
1175 #define AA(j) do { \
1176 int tmp0 = ptr[-1-j]; \
1177 int tmp1 = ptr[ j]; \
1178 int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \
1179 ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \
1180 ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \
1200 for (i = n; i > 0; i--) {
1217 INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
1219 int i, j, mdct_long_end, sblimit;
1224 while (ptr >= ptr1) {
1228 if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
1231 sblimit = ((ptr - g->
sb_hybrid) / 18) + 1;
1240 mdct_long_end = sblimit;
1247 buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
1248 ptr = g->
sb_hybrid + 18 * mdct_long_end;
1250 for (j = mdct_long_end; j < sblimit; j++) {
1252 win =
RENAME(ff_mdct_win)[2 + (4 & -(j & 1))];
1253 out_ptr = sb_samples + j;
1255 for (i = 0; i < 6; i++) {
1256 *out_ptr = buf[4*i];
1260 for (i = 0; i < 6; i++) {
1261 *out_ptr =
MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*1)];
1262 buf[4*(i + 6*2)] =
MULH3(out2[i + 6], win[i + 6], 1);
1266 for (i = 0; i < 6; i++) {
1267 *out_ptr =
MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*2)];
1268 buf[4*(i + 6*0)] =
MULH3(out2[i + 6], win[i + 6], 1);
1272 for (i = 0; i < 6; i++) {
1273 buf[4*(i + 6*0)] =
MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*0)];
1274 buf[4*(i + 6*1)] =
MULH3(out2[i + 6], win[i + 6], 1);
1275 buf[4*(i + 6*2)] = 0;
1278 buf += (j&3) != 3 ? 1 : (4*18-3);
1281 for (j = sblimit; j <
SBLIMIT; j++) {
1283 out_ptr = sb_samples + j;
1284 for (i = 0; i < 18; i++) {
1285 *out_ptr = buf[4*i];
1289 buf += (j&3) != 3 ? 1 : (4*18-3);
1296 int nb_granules, main_data_begin;
1297 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
1299 int16_t exponents[576];
1308 if (s->nb_channels == 2)
1313 for (ch = 0; ch < s->nb_channels; ch++) {
1319 for (gr = 0; gr < nb_granules; gr++) {
1320 for (ch = 0; ch < s->nb_channels; ch++) {
1341 if (blocksplit_flag) {
1348 for (i = 0; i < 2; i++)
1350 for (i = 0; i < 3; i++)
1354 int region_address1, region_address2;
1357 for (i = 0; i < 3; i++)
1363 region_address1, region_address2);
1392 #if !UNCHECKED_BITSTREAM_READER
1393 s->
gb.size_in_bits_plus8 += extrasize * 8;
1396 for (gr = 0; gr < nb_granules && (s->
last_buf_size >> 3) < main_data_begin; gr++) {
1397 for (ch = 0; ch < s->nb_channels; ch++) {
1415 for (; gr < nb_granules; gr++) {
1416 for (ch = 0; ch < s->nb_channels; ch++) {
1422 int slen, slen1, slen2;
1427 av_dlog(s->
avctx,
"slen1=%d slen2=%d\n", slen1, slen2);
1432 for (i = 0; i < n; i++)
1435 for (i = 0; i < n; i++)
1439 for (i = 0; i < 18; i++)
1441 for (i = 0; i < 3; i++)
1444 for (i = 0; i < 21; i++)
1450 for (k = 0; k < 4; k++) {
1452 if ((g->
scfsi & (0x8 >> k)) == 0) {
1453 slen = (k < 2) ? slen1 : slen2;
1455 for (i = 0; i < n; i++)
1458 for (i = 0; i < n; i++)
1463 for (i = 0; i < n; i++) {
1472 int tindex, tindex2, slen[4], sl, sf;
1487 }
else if (sf < 244) {
1499 }
else if (sf < 500) {
1510 for (k = 0; k < 4; k++) {
1514 for (i = 0; i < n; i++)
1517 for (i = 0; i < n; i++)
1532 if (s->nb_channels == 2)
1535 for (ch = 0; ch < s->nb_channels; ch++) {
1545 return nb_granules * 18;
1549 const uint8_t *buf,
int buf_size)
1551 int i, nb_frames, ch, ret;
1557 if (s->error_protection)
1596 assert(i <= buf_size - HEADER_SIZE && i >= 0);
1612 for (ch = 0; ch < s->nb_channels; ch++) {
1613 samples_ptr = samples + ch;
1614 for (i = 0; i < nb_frames; i++) {
1615 RENAME(ff_mpa_synth_filter)(
1619 samples_ptr, s->nb_channels,
1621 samples_ptr += 32 * s->nb_channels;
1625 return nb_frames * 32 *
sizeof(
OUT_INT) * s->nb_channels;
1631 const uint8_t *buf = avpkt->
data;
1632 int buf_size = avpkt->
size;
1656 avctx->
sub_id = s->layer;
1658 if (s->frame_size <= 0 || s->frame_size > buf_size) {
1661 }
else if (s->frame_size < buf_size) {
1663 buf_size= s->frame_size;
1694 #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
1696 int *got_frame_ptr,
AVPacket *avpkt)
1698 const uint8_t *buf = avpkt->
data;
1699 int buf_size = avpkt->
size;
1702 int len, out_size, ret = 0;
1717 header =
AV_RB32(buf) | 0xffe00000;
1730 avctx->
sub_id = s->layer;
1732 s->frame_size =
len;
1734 #if FF_API_PARSE_FRAME
1735 if (avctx->parse_only)
1736 out_size = buf_size;
1752 #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
1757 typedef struct MP3On4DecodeContext {
1761 const uint8_t *coff;
1764 } MP3On4DecodeContext;
1771 static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
1774 static const uint8_t chan_offset[8][5] = {
1786 static const int16_t chan_layout[8] = {
1799 MP3On4DecodeContext *s = avctx->
priv_data;
1802 for (i = 0; i < s->frames; i++)
1813 MP3On4DecodeContext *s = avctx->
priv_data;
1834 s->syncword = 0xffe00000;
1836 s->syncword = 0xfff00000;
1845 if (!s->mp3decctx[0])
1853 s->mp3decctx[0]->adu_mode = 1;
1858 for (i = 1; i < s->frames; i++) {
1860 if (!s->mp3decctx[i])
1862 s->mp3decctx[i]->adu_mode = 1;
1863 s->mp3decctx[i]->avctx = avctx;
1864 s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
1868 if (s->frames > 1) {
1870 sizeof(*s->decoded_buf));
1871 if (!s->decoded_buf)
1877 decode_close_mp3on4(avctx);
1885 MP3On4DecodeContext *s = avctx->
priv_data;
1887 for (i = 0; i < s->frames; i++) {
1895 static int decode_frame_mp3on4(
AVCodecContext *avctx,
void *data,
1896 int *got_frame_ptr,
AVPacket *avpkt)
1898 const uint8_t *buf = avpkt->
data;
1899 int buf_size = avpkt->
size;
1900 MP3On4DecodeContext *s = avctx->
priv_data;
1902 int fsize, len = buf_size, out_size = 0;
1906 int fr, j, n, ch, ret;
1910 if ((ret = avctx->
get_buffer(avctx, s->frame)) < 0) {
1914 out_samples = (
OUT_INT *)s->frame->data[0];
1921 outptr = s->frames == 1 ? out_samples : s->decoded_buf;
1926 for (fr = 0; fr < s->frames; fr++) {
1929 m = s->mp3decctx[fr];
1936 header = (
AV_RB32(buf) & 0x000fffff) | s->syncword;
1943 if (ch + m->nb_channels > avctx->
channels) {
1948 ch += m->nb_channels;
1957 if (s->frames > 1) {
1960 bp = out_samples + s->coff[fr];
1961 if (m->nb_channels == 1) {
1962 for (j = 0; j < n; j++) {
1963 *bp = s->decoded_buf[j];
1967 for (j = 0; j < n; j++) {
1968 bp[0] = s->decoded_buf[j++];
1969 bp[1] = s->decoded_buf[j];
1978 avctx->
sample_rate = s->mp3decctx[0]->sample_rate;
1980 s->frame->nb_samples = out_size / (avctx->
channels *
sizeof(
OUT_INT));
1989 #if CONFIG_MP1_DECODER
2006 #if CONFIG_MP2_DECODER
2023 #if CONFIG_MP3_DECODER
2040 #if CONFIG_MP3ADU_DECODER
2047 .
decode = decode_frame_adu,
2057 #if CONFIG_MP3ON4_DECODER
2062 .priv_data_size =
sizeof(MP3On4DecodeContext),
2063 .
init = decode_init_mp3on4,
2064 .
close = decode_close_mp3on4,
2065 .
decode = decode_frame_mp3on4,
2067 .
flush = flush_mp3on4,